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Socio-technical systems

The inclusion of temporal aspects in the environmental assessment of complex socio-technical systems is
crucial. For power systems, such considerations allow computing the environmental impacts related to
demand-side management strategies which could not be assessed with static data, such as temporal
shifts of part of the demand from one period of the day to another. Several life cycle assessment (LCA)
studies have included temporal aspects, but mostly regarding the system's production function. The
consumption side of a socio-technical system, however, is also prone to fluctuate in time and its
misrepresentation may lead to additional errors. In this study, the residential power demand of a set of
Canadians' homes was modeled with a stochastic approach. Then, three different LCA approaches are
compared: the use of an average or a marginal electricity mix and a combination of the two. The in-
fluence of the temporal granularity of data (yearly average or hourly data) on LCA results was also
investigated. The case study of a simple demand-side management strategy illustrates the method.
Results show that the assumption of a constant demand leads to errors regarding environmental impacts
assessment, which may be as high as 136% depending on the period of the year assessed. Moreover, the
wrong assumption regarding the nature of power demand leads to sub-optimal results for demand-side
strategy: the use of an average electricity mix slightly increases greenhouse gas emissions, whereas
applying a marginal mix decreases emissions by 10%.

© 2019 Published by Elsevier Ltd.

1. Introduction

among economic, environmental, and social elements (Moon,
2017). However, understanding the complex interactions between

World scientists' recently reminded humankind of its lack of
progress in the last 25 years toward solving environmental chal-
lenges (Ripple et al.,, 2017). The Sustainable Development Goals
(SDGs) are a response to some of those challenges and aim at
improving current and future generation lives and prospects
(United Nations, 2017). Amongst them, SDG 12 seeks to ensure
sustainable consumption and production patterns (United Nations,
2017). It is often difficult to assess the sustainability of a given ac-
tivity because of the multiple and complex interactions to consider
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human and natural systems is critical to creating sustainability
solutions (Liu et al., 2015). In many instances, one may study sus-
tainability questions adopting a socio-technical system view, where
a social network of actors and a physical network of artifacts give
form to a complex adaptative system (Van Dam et al., 2012).
Socio-technical systems are defined as systems in which the
production and the use of technologies are distinguished but
studied as a whole (Geels, 2012). Applying a socio-technical
approach to study scenarios of low-carbon transitions allows un-
derstanding the dynamics of those transitions and going beyond
the simple focus on technology fixes or behavior changes (Geels,
2012). In sum, this approach proposes to study the co-evolution
of the production and the consumption sides of a system which
changes. Examples of socio-technical systems studied in
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sustainability are cities (Deng et al., 2018; Williams, 2017), the agri-
food system (Jedelhauser and Binder, 2018; Konefal, 2015), tourism
(Lim et al., 2017), mining (Weiser et al., 2017), and transportation
(Fallde and Eklund, 2015; Geels, 2012).

1.1. The power system as a complex socio-technical system

The electricity sector is also an example of socio-technical sys-
tems. It is made up of a network of technological artifacts (e.g.,
generation technologies such as wind farms or thermal power
plants, transmission lines, etc.) and involves many interrelated
actors (e.g., power suppliers, network operators, regulatory au-
thorities, industrial and residential consumers, etc.) (Batten, 2009;
Eisenberg et al., 2017; Van Dam et al., 2012). The power system co-
evolves with the web of actors: the number of links in the network
and their types change over time and affect both the technical and
the social dimensions of the system (Van Dam et al., 2012). Indeed,
the intertwined social and technical networks of the power system
form a complex adaptative system: actors in the social network are
responsible for the operation and development of the technical
network which in turn affects the behavior of the actors (Van Dam
et al,, 2012).

Electricity and heat production was responsible for a quarter of
global greenhouse gas emissions (GHG) in 2010 and thus fairly
contribute to climate change (Intergovernmental Panel on Climate
Change (IPCC), 2014). It is possible, however, to reduce the climate
change impact of power systems, for instance, by decreasing the
environmental impacts of electricity consumption (Dandres et al.,
2017) or by increasing the share of renewables in the production
mix (Milovanoff et al., 2018). Such strategies often lean on infor-
mation and communication technologies (ICT) (Milovanoff et al.,
2018).

ICT may be used to improve the environmental performance of
human activities and technological processes. For example, tele-
conferencing and telecommuting reduce polluting emissions from
transportation (Kitou and Horvath, 2006; Matsuno et al., 2007).
Digitization is another example where ICT decrease media's envi-
ronmental impacts (Reichart, 2002). At last, one promising appli-
cation of ICT to lower power systems' environmental impact is the
smart grid. By promoting demand-side management (DSM), the
smart-grid could contribute to reducing the environmental impacts
of power systems (Warren, 2014). DSM aims to better manage or
reduce energy consumption on the demand side of the system to
achieve objectives such as balancing supply and demand or facili-
tate the integration of renewables (Warren, 2014).

The residential sector represents around 30% of the total elec-
tricity use in OECD countries (Geng et al., 2017) and is responsible
for 19% of global GHG emissions (Intergovernmental Panel on
Climate Change (IPCC), 2014). Life cycle assessment (LCA) studies
on the residential sector show that the operation phase is the main
contributor of buildings’ life cycle GHG emissions (mainly dues to
space heating and cooling) (Geng et al., 2017). Moreover, the studies
showed that those emissions were dependant on the sources and
type of energy used in that phase (Geng et al., 2017). The applica-
tion of LCA to study the use of electricity in the residential sector
enables the investigation of different policy scenarios aiming at
reducing its climate change impact. A study on retrofitting, for
instance, compared the GHG emissions reduction of different
heating system and building envelope scenarios in Canada
(Pedinotti-Castelle et al., 2019). The authors showed that retrofit-
ting generate environmental and economic benefits. Moreover, the
export of saved electricity through retrofitting to neighboring re-
gions help avoid power generation from natural gas, which brings
about additional environmental benefits. Other examples include a
study of the integration of renewables in a French house (Roux

et al., 2016) or the choice of different building structures (Fouquet
et al.,, 2015). The application of DSM strategies in the residential
sector could also help reducing its climate change impact, for
instance, via smart homes (Walzberg et al., 2017).

Concerning energy management, a smart home may be
described as a combination of smart metering, smart appliances (or
Internet of things), and home automation (Paetz et al., 2012). Those
elements help the implementation of DSM strategies such as
shifting demand from one period to another or energy conservation
(Warren, 2014). Energy conservation avoids the use of energy and
related GHG emissions in a rather straightforward way. Load
shifting, however, does not intend to reduce energy consumption
but instead aims to prevent the use of marginal electricity gener-
ation technologies such as coal plants (which cause more signifi-
cant climate change impact) to meet the peak demand (Milovanoff
et al., 2018). This DSM strategy makes the environmental assess-
ment more difficult because it requires temporally disaggregated
data of power systems. Otherwise, it is not possible to assess the
consequences of the shifting load from one period to another
(Walzberg et al., 2017).

1.2. Temporal aspects in life cycle assessment

An important, but often overlooked dimension when studying
complex systems (such as power systems) is time (Van Dam et al.,
2012; Weiser et al., 2017). Time plays a significant role in the
environmental, social, and economic impact of human activities.
Regarding socio-economic impact, time reconfigures social dy-
namics amongst stakeholders, which may change conclusions
depending on the period assessed (Jones et al., 2017; Karami et al.,
2017; Merveille, 2014). As to environmental impact, Levasseur et al.
showed that consideration of time in LCA may also modify con-
clusions regarding the system assessed (Levasseur et al., 2010) and
several works further developed their methodology particularly by
proposing methods to generate dynamic life cycle inventories (LCI)
(Beloin-Saint-Pierre et al., 2014; Cardellini et al., 2018).

LCA accounts for all matter and energy flows related to the
entire life cycle of a product or a service (life cycle inventory or LCI),
before calculating its related potential environmental impacts (life
cycle impact assessment or LCIA) (Hellweg and i Canals, 2014). The
methodology is applied to study two types of questions: 1) what
are the potential environmental impacts of a product or service
(ALCA) and 2) what are the environmental consequences of a
change in demand of a product or service that underlies a decision-
making process (CLCA) (Baustert and Benetto, 2017). For both ALCA
and CLCA, products and services are assessed as to their capacity to
fulfill a particular function, and therefore, a functional unit is
defined before the assessment. ALCA models the physical flows
between processes for the functional unit at a specific time. It is,
therefore, a “snapshot” of the studied system [29]. In the case of
CLCA, impacts of changes in demand of the functional unit, are
computed. Thus, CLCA is not limited to the system's physical flows
(Baustert and Benetto, 2017).

Since the 1960s, LCA underwent various developments in order
to study more and more complex production and consumption
systems (Bjorn et al., 2018; Hellweg and i Canals, 2014). Researchers
developed different approaches regarding system boundaries,
allocation methods, data aggregation levels, and time (Guinée et al.,
2011). The consideration of temporal aspects is especially relevant
to electricity infrastructure. Indeed, different generation technol-
ogies are used depending on the hour of the day and the season
which leads to temporal variations in electricity environmental
impacts (Dandres et al., 2017; Elzein et al., 2019; Milovanoff et al.,
2018). Particularly in smart grids contexts which may favor shift-
ing power demand in time. In LCA the inventory of elementary
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flows is, however, traditionally temporally aggregated to a given
year.

Pehnt and later, Levasseur et al. first introduced the concept of
dynamic LCA (Levasseur et al., 2010; Pehnt, 2006). Levasseur et al.,
notably, showed how to characterize a dynamic LCI with time-
dependent characterization factors (Levasseur et al., 2010). How-
ever, the methodology does not clarify how to generate dynamic
LCI data. Since then, significant steps were taken towards dynamic
LCA and has led to numerous methodological development to
include time in LCA (Beloin-Saint-Pierre et al., 2014; Cardellini
et al.,, 2018; Dandres et al., 2017; Fauzi et al., 2019; Kono et al.,
2017; Maier et al.,, 2017; Tiruta-Barna et al.,, 2016). One study, for
instance, extended the enhanced structural path analysis method
developed by Beloin-Saint-Pierre at al. to incorporate both spatial
and temporal information in the LCI of wheat production in Corn-
wall, UK (Maier et al., 2017). While the authors found that emis-
sions can be computed across space and time, they also highlighted
that LCI databases are often not detailed enough to generate a
comprehensive and realistic analysis.

Another study solved this issue by collecting high-resolution
temporal data of electricity generation to calculate the dynamic
LCI of electricity use in France (Milovanoff et al., 2018). According to
their analysis, the lack of inclusion of detailed temporal information
leads to underestimate or overestimate environmental impacts
depending on the period considered. Moreover, their study em-
phasizes that variabilities of demand and production sources of
power systems make the use of a dynamic LCI especially relevant. A
similar study confirmed that the use of average rather than hourly
emissions factors could lead to errors as high as 34% when
assessing the emissions of electricity use in Germany (Kono et al.,
2017). Moreover, the authors showed those errors were especially
high during the weekend daytime and weekday nighttime, which
was explained by higher or lower shares of renewables in the grid
mix for these periods. Another study on French residential elec-
tricity consumption found that environmental impacts vary in line
with the season (Roux et al., 2016). In winter, a higher share of coal
and gas power plants in the grid leads to a higher climate change
impact than in summer.

1.3. Problem statement and research objectives

For power systems, besides increasing the realism of the model,
including dynamic aspects in the LCA allows assessing the envi-
ronmental benefit of specific DSM strategies. For instance, strate-
gies that shift part of the demand from one period to another
(Milovanoff et al., 2018), or from one region to another (Dandres
et al.,, 2017) may not be developed nor assessed with static data
such as yearly average emission factors. As, power systems imply
different generation technologies at different period of the day,
month, and year, the use of LCA enables spotting potential envi-
ronmental trade-offs (Turconi et al., 2013). Such trade-offs may
emerge when DSM strategies are used within the smart grid. The
shift of demand from a particular region or period to another may,
indeed, reduce certain environmental impacts but deepen others
depending on the technologies forming the grid mix in that period
or region (Dandres et al., 2017; Milovanoff et al., 2018). Hence,
temporal aspects must be considered in order to be able to evaluate
the environmental consequences of the smart grid capacity to shift
in time or space power demand. As the literature shows, many
approaches have been developed to include temporal aspects in
LCA; however, two main challenges remain.

First, not many studies have focused on the modeling of the
demand side of the equation, i.e., the functional unit. Indeed, the
use phase scenarios (which often define the functional unit) are
often based on basic assumptions (di Sorrentino et al., 2016).

Furthermore, the scenarios are usually static and do not account for
changes in demand for a particular functional unit over time. Thus,
better modeling of the use phase could increase the realism of the
LCA and provide insight into how and why the demand for a given
functional unit evolves (Walzberg et al., 2019). One LCA study on
server's usage, for instance, simulated the hourly electricity de-
mand of an average day and used an hourly electricity mix to
compute the LCI (Dandres et al., 2016, 2017). Certain days of the
year may, however, have a very different hourly profile than the
assumed average (e.g., the day of the Super Bowl or the World Cup),
which would result in errors in the assessment. This issue may be
especially relevant if the atypical days of severs' usage coincide to
atypical days of electricity generation environmental impacts. The
challenge of adequately defining the functional unit was, thus,
mentioned by the authors (Dandres et al., 2016). The error may
remain small in the case of servers' usage; however, this may not be
the case for residential electricity consumption. Indeed, the later
highly fluctuate depending, for instance, on weather conditions.

Second, it is not always evident in the literature what type of
LCA question is answered with a dynamic assessment. Some au-
thors have used an attributional approach to build temporally
disaggregated LCI (Milovanoff et al., 2018; Roux et al., 2016), while
others applied a consequential view (Dandres et al., 2017). With
regards to the minimization of servers’ usage environmental
impact, Dandres et al. show that using an attributional approach
does not always allow an optimal reduction in environmental
impact (Dandres et al., 2017). According to the authors, however, it
is critical to reconcile those two approaches for policy implications.
Thus, a solution for electricity systems could be “a hybrid method in
which the allocation of the marginal and non-marginal emissions
between all electricity consumers would depend on the steady and
fluctuating parts of their power demands” (Dandres et al., 2017). In
the case of DSM of residential electricity consumption, for instance,
part of the demand is steady when compared to the business as
usual (BaU) situation, and thus it should be assessed with an
attributional approach. Another part of the demand, however,
fluctuates (as compared to the BaU) due to the DSM strategy and
should be assessed with a consequential approach. Hence, this
article aims to:

e Demonstrate the relevance of taking into account the temporal
variations of both the production and consumption sides in the
case of the LCA of residential power demand,

e Propose an approach to assess the environmental impacts of the
steady and fluctuating parts of residential power demand and
apply it on a simple DSM case study.

2. Materials and method

In the environmental assessment of complex socio-technical
systems such as power systems, it is necessary to realize that
both the functional unit provided by the system in use and its
production evolve (Fig. 1). In the case of residential electricity
consumption, the use of electricity varies according to the time of
the day (e.g., nighttime or daytime), the day of the week (weekend
or weekday), or the month of the year (winter months or summer
months). On the production side, variation in demand and the
weather are some of the factors that affect the shares of the
different production technologies used in the electricity mix. The
following sub-sections present how temporal information was
included on both the demand and production side of the assess-
ment of residential electricity consumption. Next, a hybrid
attributional-consequential approach to LCA is presented along
with the case study.
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Fig. 1. Representation of a complex socio-technical system at time t. The production
part of the system may be modeled with LCA while various modeling techniques may
be used for the consumption part. In the figure, f; designates the amount of a given
functional unit used at t, ar, by, and c; designates the economic flows linking the
technological processes of the product system.

2.1. A stochastic model of residential power demand

The starting point of the method is to define a set of households,
each equipped with a set of appliances. For the case study, 10 Ca-
nadian households located in Toronto and 11 appliances (range,
refrigerator, freezer, dishwasher, clothes washer and dryer, lighting,
space heating, water heating, space cooling, and other small ap-
pliances) are modeled. The number of households was chosen to
keep a low computation time. The choice and distribution of ap-
pliances, (i.e., the amount of each appliance in each household),
follows National statistics (Natural Resources Canada, 2016). Sta-
tistical data are also used to establish yearly electricity consump-
tion for each appliance (Table 1). Indeed, the comprehensive energy
use database from Natural Resources Canada provides yearly elec-
tricity consumption for Ontario's residential sector, for each appli-
ance and different years (Natural Resources Canada, 2016). From
the database, information on Ontario's number of households and
appliances per households may also be retrieved, allowing the
determination of the values in Table 1. The studied period is one
year from April 1, 2013, to March 30, 2014.

Then the stochastic model from (Paatero and Lund, 2006)
(which was adapted in previous works (Walzberg et al., 2017, 2019))
is used to establish the power demand P, at a particular hour h
according to Equation (1).

Table 1
Appliance yearly electricity consumption (04/2013-04/2014).

Appliances Yearly electricity consumption (kWh)
Stove & oven 646
Refrigerator 434
Freezer 333
Dishwasher 86
Clothes washer 60
Dryer 805
Lighting 1095
Space heating 19727
Water heating 6172
Space cooling 1171
Other appliances 94

Pl‘l = Z Z(pd(lvjv d) X ph(i7j7 d7 h) X 6]) (l)
jooi

where n and m designate the total number of households and
electric appliances respectively. The probabilities p,; and p;, are the
probabilities for a household i to use appliance j on the day d and
hour h respectively. The probabilities p; and p, are taken from the
literature (Walzberg et al., 2019). Finally, ¢; is the power demand for
appliance j. To improve model realism, space heating and cooling
daily electricity load (1, and vy, respectively) are correlated to the
daily outside temperature through heating and cooling degree days
(Hy and C, respectively) (Equation (2) et 3):

o x Hd
Na =1 ZHC{ (2)
d
VI o
Yd =7 ch (3)
d

with 1 and v the yearly electricity consumption associated with the
household space heating and cooling activities. Heating and cooling
degree days H; and C; are determined from equations (4) and (5):

Hy=T,—TforT<T, (4)
Hd:OfOTT>Tb

Cd = Tb — TfOf T>Tb (5)
Ci=0forT<T,

where T}, is the base temperature (in this study set to 18 °C), and T is
the outside air temperature. Temperatures are taken from historical
climate data, choosing Toronto's weather station (Government of
Canada, 2016). The stochastic model is used to generate residen-
tial electricity consumption profiles with a time resolution of 1 h
(Fig. 2). The Pearson correlation coefficient between the model's
output data and historical power generation data is computed to
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Fig. 2. Electricity load composition for 10 Canadian households (located in Toronto) on
July 31, 2013.
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validate the model (Independent Electricity System operator
(IESO), 2015). A value of 0.7 was obtained, which indicates a high
correlation. The differences between historical and model values
could be explained by the fact that Ontario's data also include de-
mand from the industrial sector as well as residential. This fact may
explain why the correlation between the two sets of data is not
higher.

2.2. Life cycle assessment including temporal aspects

The functional unit chosen for this LCA study is the use of electric
appliances, in kWh, by ten households living in Toronto from April
2013 to April 2014. The specific period of 2013—2014 was chosen
because of its greater variability in the grid mix composition (as
compared to more recent periods) to highlight the potential errors
made when the fluctuation in demand is not considered. The same
methodology, however, could be applied to other datasets. The four
endpoint impact categories of the Impact 2002 + methodology,
(climate change, human health, ecosystem quality, and resource
measured in kg CO, eq, DALY, PDF*m?*yr, and M] respectively), are
used for the LCIA (Jolliet et al., 2003). The LCA is limited to the use of
electricity to power households' appliances; the raw materials
extraction, production, transport, and end-of-life of the appliances
and the household's dwellings are therefore not included. The
analysis is still relevant to the residential sector because the oper-
ational phase contributes to up to 90% of environmental burdens
(Buyle et al., 2013).

2.3. Average hourly electricity mix

An hourly electricity mix is built to assess most accurately the
household's hourly electricity consumption profiles. First, power
generation data from each technology composing the grid mix as
well as imports and exports are collected for each hour of the year
from the operator which manages Ontario's power system (Inde-
pendent Electricity System operator (IESO), 2015). Indeed, the IESO
website provides information on electricity demand, supply as well
as import and export on various temporal scales. The electricity mix
is then modeled according to (6).

S=G+I-E (6)

where S is the supply mix (which is used by households), G is
Ontario’s electricity production mix, I and E are respectively the
imports from and exports to neighboring power systems (see
Supplementary Materials S1).

Then, the ecoinvent database is used to set up the attributional
LCI of the hourly electricity mix (also named average hourly elec-
tricity mix in the following) (Wernet et al.,, 2016). To that end,
Ontario's electricity mix process from the ecoinvent database is
used to set the correspondence between IESO technologies and the
different ecoinvent processes (Table 2). Mostly regional processes
are used. For Ontario's imports from Michigan and Minnesota,
(representing less than 10% of overall imports), however, specific
processes are not available in ecoinvent. For those imports, the
process representing New York imports was thus chosen as a proxy.

2.4. Marginal hourly electricity mix

In a second approach, a consequential LCI of the hourly elec-
tricity mix is built (also named marginal hourly electricity mix in the
following). First, the marginal sources of electricity are identified by
determining the variations in generation per technology (including
imports) between each hour of the hourly electricity mix, following
the approach developed by (Dandres et al., 2017). Thus, the increase

or decrease in power generation per technology and for each hour
is obtained for Ontario's electricity mix. Second, once the marginal
sources of electricity are identified, the ecoinvent database is used
again to determine the hourly LCI. This approach supposes that
marginal technologies contribute equally to the rises in power
demand regardless of their increase or decrease in capacity
(Dandres et al., 2017). Moreover, one limitation of Dandres et al.
approach is that it does not consider electricity imports. Because
utilities typically balance supply and demand with import and
exports of electricity, the former may, however, be an important
marginal source of electricity. Depending on the technologies used
to produce electricity in the neighboring regions, this could affect
the consequential LCI. Imports are therefore included for this study.
Equation (7) summarizes how the different shares of the marginal
hourly electricity mix are computed:

18kt —8keal
Z‘gkt *gkt—l) (7)
k

Ot =

where «y, is the marginal share of the technology or import k be-
tween t — 1 and t and g, and g;,_ are the power generation of the
technology or import k at t and t — 1 respectively. An example of
the determination of the average and marginal hourly electricity
mix is provided in Supplementary materials S1.

2.5. Life cycle assessment approach for demand-side management
strategies

2.5.1. Hybrid attributional-consequential approach

The marginal mix is meant to analyze environmental impacts
due to changes in power demand, while the average mix is adapted
to assess BaU electricity consumption (Dandres et al., 2017). In the
case of DSM, it may be necessary to assess both the steady and the
fluctuating part of residential electricity consumption to under-
stand, for instance, where an untapped potential for better man-
agement exists. To that end, the average and marginal hourly
electricity mixes may be used in combination. First, the marginal
demand is identified by assessing the changes caused by the DSM
strategy to the BaU residential electricity consumption. In a field
study, for instance, this can be achieved by comparing data from
before and after the introduction of the DSM program. In a pro-
spective study such as this one, it entails the elaboration of detailed
BaU and DSM scenarios. The constant part of the power demand is
then assessed with the average mix, while changes are assessed
with the marginal mix (Equation (8)).

St = X9t + X:@: (8)

where s; is the environmental impact at ¢, x,, and x; are respec-
tively the constant part and the change in power demand at t and ¢,
and ¢; are the average and marginal mix impact factors at t
respectively. An illustration of calculation for the climate change
impact category is given in the Supplementary Materials S1.

2.5.2. Demand-side management case study

In the results section, this approach is applied to a simple DSM
strategy: the shifting of households' dryers' loads up to 2h later
than usual. In a first scenario, statistical data are used to determine
dryers' loads and elect usage hours according to the stochastic
model. Due to the requirements in computational time, 30 days
between April 2013 and April 2014 were selected for this part of the
study (see Supplementary Materials S1). In a second scenario, the
dryers' usage hours are set up as the average usage hour from the
results of the stochastic model. This scenario allows studying the
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Table 2
IESO generation technologies and related ecoinvent processes used for the LCA.

Technology in the IESO hourly data

Corresponding Ecoinvent 3.1 processes

Coal electricity production, hard coal, CA-ON
electricity production, lignite, CA-ON
heat and power co-generation, wood chips, 6667 kW, state-of-the-art 2014, CA-ON
0il electricity production, oil, CA-ON
Gas heat and power co-generation, biogas, gas engine, CA-ON
treatment of blast furnace gas, in power plant, CA-ON
electricity production, natural gas, combined cycle power plant, CA-ON
treatment of coal gas, in power plant, CA-ON
heat and power co-generation, natural gas, conventional power plant, 100 MW electrical, CA-ON
electricity production, natural gas, at conventional power plant, CA-ON

Nuclear
Hydro

electricity production, nuclear, pressure water reactor, heavy water moderated, CA-ON
electricity production, hydro, pumped storage, CA-ON

electricity production, hydro, run-of-river, CA-ON

electricity production, hydro, reservoir, non-alpine region, CA-ON
Wind electricity production, wind, 1-3 MW turbine, onshore, CA-ON

electricity production, wind, <1 MW turbine, onshore, CA-ON

electricity production, wind, >3 MW turbine, onshore, CA-ON

Import New York
Import Minnesota
Import Michigan
Import Manitoba
Import Québec

electricity, high voltage, import from NPCC, US only, CA-ON
electricity, high voltage, import from NPCC, US only, CA-ON
electricity, high voltage, import from NPCC, US only, CA-ON
electricity, high voltage, import from CA-MB, CA-ON
electricity, high voltage, import from Quebec, CA-ON

effect of assuming a steady demand rather than using more
detailed modeling of the use phase. For the 30 days and the ten
households, the most likely dryers’ usage hour is 6 p.m. and is
therefore chosen for the average demand.

To be able to differentiate between the steady and the changing
part of the residential electricity consumption, two situations are
studied. First, in the BaU scenario, the daily usage hour of each
household dryer is set up according to the stochastic model. In the
DSM scenarios, this usage hour is shifted either 0, 1, or 2 h later
depending on the objective of the DSM strategy (e.g., minimizing a
chosen environmental impact or costs). The chosen objective is
formulated as an integer linear programming problem of mini-
mizing Equation (9):

fx) =04uTx 9

In Equation (9), f is the objective function that needs to be
optimized subject to the constraints (equation (10)—(13)).
Furthermore, ¢4 is the electricity consumption related to a single
use of a dryer (which does not depend on the time of use). Still in
equation (9), the unknown vector x is the concatenation of vectors
x? for all households w and u is the vector of hourly emissions
factors for the day (thus u contains repeated values in order to have
a similar size as vector x). The optimization constraints are:

Zxﬁ’ =;b?, Vo (10)

BT (x° —b®) <2, Vo (11)
8" (x* - ) <0, Yo (12)
X2, bY€{0, 1}, Vo, t (13)

In Equations (10)—(13), x¢ and b’ are the t elements of vectors
x“ and b”. The first constraint of the integer linear programming
problem (Equation (10)) ensures that the dryer is used the same
number of times throughout the day (i.e., once) as the BaU scenario.
Equations (11) and (12) constrain the shifting of dryer's load from
none to a maximum of 2 h later than the BaU scenario. In equations
(11) and (12), vectors x® and b” represent the optimized and BaU

hourly usage of household w's dryer, respectively. Both ¥ and b”
contain twenty-three 0 and one 1, the latter representing the hour
of the day when the dryer is used. The stochastic model set up the
usage hour in b” unless when an average demand is assumed. In
the equations, 3 is a vector containing terms of an arithmetic pro-
gression of common difference one which allows to set up the
temporal constraints of the DSM scenarios.

This optimization problem could be applied to study the DSM of
other appliances with some minor modifications to constraints to
reflect each appliance specificity of use. A non-linear programming
problem was also written and solved to assess the case where the
DSM strategy's objective is to minimize daily variations in elec-
tricity consumption (Supplementary Materials S2). The integer
programming problems are modeled with Pyomo and solved with
Gurobi (Gurobi Optimization Inc, 2016; Hart et al., 2012).

3. Results and discussion

In this section, the relevance of temporally realistic scenarios is
demonstrated for the case of the LCA of residential power demand.
It shows that neglecting temporal aspects of the production and the
consumption sides of socio-technical systems may both lead to
errors in the assessment. Moreover, the importance of considering
the proper LCA approach (consequential versus attributional)
depending on use phase information is presented and illustrated
with a DSM case study. The results are discussed in light of the
literature.

3.1. Temporal aspects of production and consumption of electricity

First, the environmental impacts of yearly residential electricity
consumption are computed with different simplifying assumptions
regarding the temporal variability of the electricity mix and the
power demand. Table 3 shows errors made in each of the four
impact 2002 + endpoint categories when assuming a yearly
average demand (805 kWh/day) or a yearly average mix (see Sup-
plementary Materials S3) rather than using hourly power genera-
tion data. In the climate change impact category, the oversight of
temporal aspect in electricity production and consumption both
lead to similar low average errors (about 3%). Depending on the
period of the year and the impact category, however,
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Table 3
Errors due to two simplifying assumptions for each Impact 2002 + endpoint category and ten simulations of yearly residential electricity consumption.
Climate change Human health Ecosystem quality Resource

Errors due to the assumption of a yearly average demand (%)
Average -34 2.6 43 3.0
Standard deviation <0.1 <0.1 <0.1 <0.1
Maximum overestimation 136.0 136.0 136.0 136.0
Maximum underestimation 66.7 66.7 66.7 66.7
Errors due to the assumption of a yearly average mix (%)
Average 2.7 2.8 4.3 2.9
Standard deviation <0.1 <0.1 <0.1 <0.1
Maximum overestimation 150.3 42.0 36.5 29.2
Maximum underestimation 65.4 42.8 42.2 45.0

overestimation and underestimation may be higher. For instance,
in the climate change impact category, error due to the yearly
average mix assumption is 150.3% at 7 p.m. on August 18, 2013, and
66.7% at 9 p.m. on January 7, 2014, when assuming a constant de-
mand. Moreover, when looking at July only, neglecting the tem-
poral variability of power demand leads to an 8.6% underestimation
of climate change impact and a 3.0% overestimation of impact in the
resource endpoint category (see Supplementary Materials S3).
Although average errors may be similar, Fig. 3 shows how
differently the simplifying assumptions affect households’ elec-
tricity consumption environmental impact. While neglecting tem-
poral aspects of electricity demand flattens out the curves of
environmental impacts, discounting those aspects in the electricity
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mix underestimate or overestimate (depending on the period of the
year) peaks of environmental impacts. The figure also explains why
average errors are so low: the underestimation and overestimation
of environmental impact throughout the year balance each other
out. This result shows that for the Ontario power system, the
simplifying assumptions may not cause significant errors if the
period of the LCA is a whole year (less than 5%). This fact may,
however, not be true if the period is a month, a week or a day, the
latter being precisely the focus of certain DSM strategies such as
load shifting. Thus, choosing to model an hourly electricity mix and
demand rather than yearly average ones depends on the period
assessed, the desired level of accuracy, and the variabilities of both
electricity consumption and the mix emission factors. In this study,

0.000016

0.000014
0.000012

0.000010

0.000008
0.000006
0.000004

0.000002

0.000000 L . L
Augl3 Novl13 Marl4

1200 T T T T
1000 -
800 o

600

MJ

400

200 -

0 l

May13

Augl3

Novl3

Marl 4

= Hourly impact assuming yearly average demand

Fig. 3. Environmental impacts of the yearly electricity consumption of 10 households for each impact 2002 + endpoint categories under different assumptions.
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for instance, if the period assessed is less than a year, the approach
may be beneficial, but less so if the assessment spans several years
(e.g., the building reference life). These conclusions also depend on
the studied system and the electricity mix. A study on the German
electricity mix found a similar conclusion regarding the use of
annual rather than hourly emission factors (Kono et al., 2017).
Another study in France showed, for instance, that the use of annual
average mix rather than hourly data led to underestimations of
impacts up to about 40% (Roux et al., 2016). Finally, another critical
aspect to consider is the nature of power demand. Indeed, the
power plants which meet fluctuation in demand are not necessarily
the same as those meeting the overall demand (Milovanoff et al.,
2018).

Hence, another possible source of errors, which involves the
modeling of the production and consumption of electricity is
related to the assumption made on the nature of the power de-
mand. The DSM scenarios described above are next assessed with
both an average and a marginal mix as well as a hybrid approach to
explore the effects of these approaches to the LCA results.

3.2. Assumptions regarding the type of power demand and their
effect in a DSM case-study

First, the impacts per kilowatt-hour of the hourly average and
marginal electricity mixes were computed for the April 2013—April
2014 period (Supplementary Materials S3). Most of the year, the
climate change impact per kilowatt-hour of the marginal electricity
mix is higher than the average electricity mix, due to the higher
contribution to the mix of coal generation and imports (Fig. 4).
However, for the human health, ecosystem quality and resource
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Fig. 4. Contribution of power generation technologies to yearly residential electricity
consumption environmental impacts calculated with the a) average hourly electricity
mix, b) marginal hourly electricity mix.

endpoint categories, the marginal mix impact per kilowatt-hour is
most often lower than its average counterpart, this time due to the
lower contribution of nuclear generation. The difference between
the two approaches explains this result. The marginal mix repre-
sents the technologies that vary the most during the year: nuclear
power plants, which are responsible for most of the mix impacts in
the resource and ecosystem quality endpoints but produce elec-
tricity rather steadily, contribute less in average to the marginal
than to the average electricity mix.

On the contrary, fossil fuels, responsible for most of the mix
climate change impact, produce electricity in a more fluctuating
fashion and thus contribute more in average to the marginal than to
the average electricity mix (Fig. 4). Interestingly, in the marginal
mix, imports' contribution increases by a factor ranging from 4 to
more than 20 when compared to the average mix depending on
endpoint category. It suggests that imports are often used to satisfy
marginal demand and that they should be included in the LCA of
power systems.

Moreover, for the April 2013—April 2014 period, the impact per
kWh of the hourly marginal mix seems to vary more extensively
than its average counterpart. For instance, in the climate change
impact category, the impact per kilowatt-hour ranges of the
average and marginal mix datasets are 0.21 kg CO; eq and 1.11 kg
CO; eq, respectively. Standard deviations in this category are
0.03 kg CO; eq and 0.16 kg CO-, eq for the average and marginal mix,
respectively.

Then, the three modeling approaches were applied to the DSM
scenarios in which marginal GHG emissions are minimized. This
metric was chosen after looking at different metrics (see Supple-
mentary Materials S3) and mix assumptions (see Fig. 6) because it
allows a reasonable compromise with satisfactory impact re-
ductions in all impact categories. Table 4 shows discrepancies when
computing impacts with an average or a marginal mix rather than
the hybrid approach. The table also reports errors due to a
simplification of use phase modeling (i.e., when the dryers are al-
ways assumed to be used at 6 p.m.).

Results indicate that using the hourly average mix instead of the
hybrid approach overestimate climate change impact by about 13%
on average. For other impact categories, differences are below 6%.
Discrepancies are more significant when using the hourly marginal
mix, ranging from an average 62.5% underestimation in the
resource category to a 184.0% overestimation in the climate change
impact category. This difference in results between the use of the
average and marginal mixes is explained by the fact that power
demand is mainly steady in the dataset with average and maximum
shares of marginal demand of 5.6% and 13.7% respectively. These
results are in line with the literature (Collinge et al., 2018; Dandres
et al,, 2017; Roux et al., 2017; Smith and Hittinger, 2019). A similar
study on lighting and air conditioning efficiency improvements in
the United States showed that using an average rather than a
marginal mix may underestimate by 50% or overestimate by 100%
COy, SOy, and NOy emissions depending on the location of the
household (Smith and Hittinger, 2019). Another study on two
different types of buildings also showed that using a “static” attri-
butional LCA rather than a dynamic consequential approach would
underestimate by around 50% the buildings’ climate change im-
pacts (Collinge et al., 2018).

Assuming the dryers are always used at 6 p.m. (i.e., assumption
of average demand) leads to underestimations ranging from 0.9% in
the resource impact category to 6.4% in the climate change impact
category on average. Depending on the period assessed, the error
may be higher. For instance, on July 10, 2013, the error is 138.4% in
the climate change impact category. Altogether, these results
further show the relevance of modeling detailed production and
consumption scenarios in the LCA of complex socio-technical
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Table 4

Discrepancies due to three simplifying assumptions for each Impact 2002 + endpoint category and 30 simulations of the DSM strategy.

Climate change Human health Ecosystem quality Resource
Discrepancies due to the assumption of an hourly average mix (%)
Average 12.7 5.8 4.8 1.1
Standard deviation 154 6.8 6.1 1.0
Maximum overestimation 67.0 239 23.6 4.1
Maximum underestimation 0.0 0.0 0.0 0.0
Discrepancies due to the assumption of an hourly marginal mix (%)
Average 184.0 24.8 -11.5 —-62.5
Standard deviation 1189 54.0 445 10.0
Maximum overestimation 452.7 157.8 106.0 0.0
Maximum underestimation 0.0 41.3 64.7 78.0
Errors due to the assumption of an average demand (%)
Average -6.4 -35 -2.8 -09
Standard deviation 303 16.9 14.2 2.5
Maximum overestimation 53.7 215 184 23
Maximum underestimation 1384 79.8 67.2 104

systems. They also demonstrate that when the power demand is
mainly steady, a good approximation could be to use an hourly
average mix. If the assessed demand differs significantly with the
BaU situation, however, using an hourly marginal mix is a better
compromise.

Fig. 5 details the origin of those discrepancies for one of the days
assessed in the climate change impact category. The figure presents
electricity load profiles depending on how the DSM strategy shifts
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households' dryers loads. As expected, when using a yearly average
electricity mix, no shifting of dryers' load occurs (Fig. 5-b)). As a
result, the GHG emissions avoided (when compared to the BaU
scenario) from the DSM of dryers and computed with the hybrid
approach are 0kg CO, eq. In comparison, when the optimization
decision is based on the hourly marginal electricity mix, dryers’
loads are shifted throughout the day, for instance, from 1 p.m. to 3
p.m. (Fig. 5-a)). It results in 5.2 kg CO, eq avoided. Assuming an
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Fig. 5. Electricity consumption of 10 households on July 31st, 2013 for the BaU and DSM scenarios under different assumptions on the Ontario's electricity mix used for the
minimization of climate change impact: a) hourly marginal emissions factors, b) yearly average emissions factors, c) hourly average emissions factors, and d) under the assumption

of an average demand.
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quality, and resource impact categories respectively) with different assumptions on
Ontario's electricity mix.

average demand cause the ten households' dryers to shift their load
from 6 p.m. to 8 p.m. (Fig. 5-d)). The simplifying assumption leads
to overestimating avoided GHG emissions by 184.6% with 14.8
avoided kg CO; eq instead of 5.2 avoided kg CO, eq. Finally, an
optimization decision made on the hourly average electricity mix
causes the 8 p.m. and 9 p.m. dryers' load to be shifted to 10 p.m.
(when GHG emissions factors are lower). The hourly marginal mix
emissions factors are, however, the lowest at 8 p.m. during the
6pm—10pm period and thus the shift causes an increase of 0.9 kg
CO, eq when the hybrid approach is applied to compute climate
change impact. Overall the use of hourly marginal emissions factors
for the load shifting causes a 17.1% reduction in GHG emissions
(when compared to the BaU scenario) whereas employing hourly
average emissions factors increases emissions by 2.9%.

3.3. Demand-side management results

As illustrated by Fig. 5, choosing the LCA approach most suited
to the research question is crucial in the case of electricity systems
and is a critical parameter to account for when making electricity
consumption decisions. Indeed, as indicated above, a consequential
approach might be better suited for decisions related to DSM as the
power plants which would meet the variations in demand due to
DSM are not necessarily the same as the power plants meeting the
overall demand (Milovanoff et al., 2018). Thus, DSM optimization
decisions should be made according to marginal emissions factors
to avoid sub-optimal decisions.

Fig. 6 shows environmental impact reductions obtained with
the DSM strategy when using the hourly average, hourly marginal,
or yearly average electricity mixes to make the optimization deci-
sion. Environmental impacts are calculated with the hybrid
approach, and the percentage reductions are obtained by

comparing impacts from the optimized use of dryers and the BaU
situation. The figure further demonstrates that using the hourly
average electricity mix in the optimization decision may not always
lead to climate change reductions. It is also true for the three other
Impact 2002 + endpoint categories. Applying this electricity mix to
the DSM strategy leads to slight average increases of 0.6% and 0.1%
in the climate change and ecosystem quality impact categories and,
in average, neither increases nor decreases impacts in the human
health and resource endpoint categories. Finally, from the 30 sim-
ulations, the maximum reductions obtained with the hourly
average mix are 13.4%, 4.7%, 5.0%, and 2.4% in the climate change,
human health, ecosystem quality, and resource endpoint impact
categories respectively.

The use of the hourly marginal mix gives very different results.
First, as expected, none of the 30 days where the DSM is applied see
an increase in environmental impact: by minimizing with marginal
impact factors, environmental impacts are lower than for the BaU
situation (Fig. 6). The DSM strategy allows reducing climate change,
human health, ecosystem quality, and resource impacts by 9.9%,
5.1%, 4.2%, and 1.1% in average respectively. From the 30 simula-
tions, the maximum reductions are 41.0%, 19.2%, 19.1%, and 3.5%
respectively. Those results demonstrate, along with other work, the
relevance of using marginal data when assessing a change in power
demand (Collinge et al., 2018; Dandres et al., 2017; Elzein et al.,
2019; Pedinotti-Castelle et al., 2019). A recent study showed, for
instance, that the environmental benefits of decreasing electricity
consumption (e.g., with retrofitting) depends on the marginal
technology that is affected by the change (Pedinotti-Castelle et al.,
2019). Moreover, the study highlighted the relevance of including
exports of electricity. The present study also accounts for electricity
exports. Furthermore, it uses hourly average and marginal mixes in
combination to assess DSM strategies which shift in time part of
residential power demand.

Finally, a sensitivity analysis on the number of appliances
involved in the DSM strategy and the upper bound of the time
constraint of the load shifting was conducted (Supplementary
Materials S3). Adding new appliances results in merely adding up
their average impact reduction. It is expected as all appliances shift
their load to the same local minimum of the hourly marginal
electricity mix impact factors (as constrained by the shifting period
allowed) independently of each other. However, this behavior may
not be the same if the objective of the DSM strategy is to minimize
daily variations of power demand. Increasing the upper bound of
the shifting period up to 4 h later than the BaU shows a different
picture. Because an appliance may shift its load to a broader shifting
period, the shift may reach a better local minimum than with a
smaller shifting period, thereby increasing impact reductions. As
the shifting period extends, however, more appliances may reach
the daily minimum and thus, increasing the shifting period may not
affect impact reductions anymore. This non-linear behavior implies
that demand needs to be modeled in detail (e.g., by using a broad
definition of the functional unit (Walzberg et al., 2019)) and that
merely scaling up the results obtained for a particular case may not
be sufficient to determine actual potential impacts.

3.4. Limitations and future work

This study demonstrates, along with other works, the limits of
using yearly average rather than temporally disaggregated data in
LCA. In the case of power systems, this leads to errors as it was
previously shown (Collinge et al., 2018; Kono et al, 2017;
Milovanoff et al., 2018; Roux et al., 2016). This study developed the
analysis further, however, by showing that modeling more realistic
demand scenarios by including temporal aspects is also relevant, as
suggested by others (di Sorrentino et al., 2016; Sharp and Miller,
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2016; Su et al., 2017; Walzberg et al., 2019). This consideration al-
lows the assessment of complex socio-technical systems where
both the production and the consumption functions co-evolve.

The study also illustrates the relevance of attributional and
consequential approaches to LCA of power systems depending on
the type of demand, particularly with regards to DSM strategies, as
suggested by (Dandres et al., 2017). It is again relevant for the study
of socio-technical systems of which some parts change: the
changing demand on the consumption side is assessed with the
identified marginal technologies of the production side. Similar
studies highlighted the relevance of using marginal data, both in
LCA and in power consumption decision (Collinge et al., 2018;
Dandres et al., 2017; Elzein et al., 2019; Roux et al., 2017; Smith and
Hittinger, 2019).

Roux et al, for instance, showed that the choice of the LCA
approach changes the conclusion regarding the space heating op-
tion with the lowest carbon footprint (Roux et al., 2017). Likewise,
in the DSM case study, the choice of the LCA approach changes the
conclusion regarding the least emitting hour to choose for load
shifting. The authors found somewhat similar discrepancies asso-
ciated with the choice of the LCA approach: considering a yearly
average electricity mix rather than an hourly one underestimate
GHG emissions by about 20%, while using an hourly average mix
rather than a marginal one underestimate GHG emissions by about
90% (Roux et al., 2017). The differences in results may be explained
by the different system assessed (space heating system and load
shifting of dryers) as well as the different countries of the studies
(Canada and France). Collinge et al. also found comparable results:
using a strictly hourly marginal mix rather than a hybrid approach
overestimate impact by about 70% in the case of a LEED-certified
building (Collinge et al., 2018). The differences in results from this
study may be explained by a different geographical context as well
as a different share of marginal demand. Finally, results from this
study demonstrate, along with other work, that avoiding the use of
marginal sources of electricity may bring environmental benefits
(Pedinotti-Castelle et al., 2019). Thus, the choice of the LCA
approach is crucial for policy implications to avoid sub-optimal
decisions. The consideration for marginal emissions factors, for
instance, is especially relevant for smart systems aiming at opti-
mizing electricity consumption.

There are some limitations to this study, however. First, the
temporal resolution of the stochastic model is rather low and,
therefore, an appliance power demand at a particular hour may not
reflect the reality of its power cycle accurately. Second, apart from
clothes washers and dryers, no correlation in appliances use was
accounted for. It is an obvious limitation as patterns of households'
behaviors shape appliances' use (Micolier et al., 2019). Moreover,
the DSM scenarios studied did not encompass all appliances and
may have missed essential constraints such as the willingness for
the occupants to comply with the DSM strategy. For instance,
households may not be willing to shift certain appliances’ load to
specific periods of the day (e.g., late at night). The case study was
also limited to 30 days and ten households. Those simplifying as-
sumptions may affect the study's results, although not its general
conclusions. Finally, as many DSM strategies involve variable tariffs,
a rebound effect could occur and needs to be accounted for in the
analysis (Walzberg et al., 2017).

Eventually, data obtained in real-time may avoid the need for
modeling altogether. In the case of power systems, for instance,
near real-time data from both production and consumption of
electricity may be used for descriptive, predictive, and prescriptive
environmental assessment (Riekstin et al., 2018). In other studies,
real-time data in combination with life cycle assessment were used
to compute environmental impacts of a grinding process (Filleti
et al., 2017) and vehicles (Song et al., 2017). Some authors also

proposed a framework to combine LCA and buildings’ real-time
data on occupancy behavior and construction technologies (Su
et al., 2017). Thus, future work could study the advantage of using
near real-time data in the LCA of complex socio-technical systems.

4. Conclusion

This article has shown that ignoring temporal aspects of both
the production and consumption sides of complex socio-technical
systems may lead to errors. In this study, climate change impact
was underestimated or overestimated (depending on the period
assessed) when a yearly average power demand was assumed
rather than an hourly one. For instance, for the month of July, this
assumption led to a 9% underestimation. Moreover, choosing the
right LCA approach (attributional or consequential) is crucial when
assessing a fluctuating demand. The different approaches may lead
to discrepancies in the assessment and induce sub-optimal de-
cisions. In a simple DSM case study, choosing an unsuited approach
in the optimization algorithm led to an increase in climate change
impact. The use of marginal emissions factors to shift in time
households’ dryer load allowed, however, a climate change impact
reduction of about 10%. Thus, future DSM policies regarding load
shifting should carefully choose the metric for optimization de-
cisions. Designing such policies may entail, however, to be able to
predict the emissions related to electricity consumption in near real
time.

This study highlighted the need to account for temporal aspects
in LCA, especially in the use phase of complex socio-technical
systems. Further work also related to the use phase of power sys-
tems would be to study the potential for the rebound effect. In a
broader perspective, the socio-technical approach entails to
consider users of technology; in the case of DSM strategies this
means considering aspects such as the “social optimum” in addi-
tion to the “technological optimum."
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